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Abstract: This paper presents a detailed complexity study of the existing non-binary 
LDPC decoding algorithms in order to rigorously compare them from a hardware 
perspective. The Belief Propagation algorithm is first considered as well as its 
derivative versions in the frequency and logarithm domains. We then focus on the 
Extended Min-Sum and its recent simplified version. For each algorithm, the number 
of operations in an elementary step of the check and variable nodes is determined. 
Finally we evaluate the interest of the application of the simplified Extended Min-
Sum algorithm to a new family of non-binary LDPC codes designed in the 
framework of the DaVinci project1. 
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1. Introduction  
The potential of LDPC codes designed over high-order finite fields GF(q) is now well-
known. These codes have shown to improve the performance of binary LDPC for small and 
moderate codeword lengths. However, the decoder complexity increases with q, limiting 
the design possibilities and motivating the search of simplified decoding algorithms. We 
present by the following a brief overview of GF(q) LDPC decoding algorithms focusing on 
complexity issues. 
 
 The Belief Propagation (BP) algorithm presents computational complexity dominated 
by O(q2) when directly applied to GF(q) LDPC codes. This is why, considering values of q 
≥ 16 results in prohibitive complexity. However, as proposed in [1] and [2], the frequency 
domain can be considered if q=2p. This FFT-Based BP decoding reduces complexity to 
O(dc.p.q). This algorithm was also described in the logarithm domain [3], leading to the so-
called log-BP-FFT. 
 
 A reduced-complexity decoding algorithm for LDPC codes was presented in [4]. This 
algorithm, called the Extended Min-Sum (EMS) algorithm, is based on a generalization of 
the Min-Sum (MS) algorithm used for binary LDPC codes ([5], [6] and [7]).  The basic idea 
is to use only a limited number nm of reliabilities in the messages at the input of the check 
node in order to reduce the computational burden of the check node update. With nm << q, 
the complexity of a check node varies in O(q.log q), using log-density-ratio representations 

                                                 
1 This work is supported by the European FP7 ICT-STREP DAVINCI project. Contract Number: INFSO-
ICT-216203 
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of the messages and without sacrificing too much in performance (even for high order field 
codes, up to GF(256)). 
 
 A new implementation of the EMS decoder has recently been proposed in [8]. A 
particularity of this new algorithm is that it takes into account the memory problem of the 
non-binary LDPC decoders, together with a significant complexity reduction per decoding 
iteration. The key feature of the new EMS decoder is to extend the principle of truncating 
the vector messages to both the check node and data node inputs. The authors truncate the 
messages from q to nm values in an efficient way so as to reduce the truncation impact on 
the performance of the code. Moreover, they introduce an efficient offset correction to 
compensate for the performance loss. The complexity of the EMS decoder is now 
theoretically dominated by O(nm. log nm), with nm << q, which is an important complexity 
reduction compared to all existing methods [3], [9], [4]. However, since parallel insertion is 
needed for reordering the vector messages, hardware complexity is in practice dominated 
by O(nm 2); and this is the complexity level that we consider for our study. 
 
 In this paper, the non-binary LDPC codes that we consider are those designed in the 
framework of the DaVinci project. This family of codes is defined on GF(64) and 
characterized by a fixed variable node degree dv=2 and four values of check node degree 
dc=4, 6, 8 and 12, leading to code rates R = 1/2, 2/3, 3/4 and 5/6.  
 
 This paper is organized as follows: Section 2 deals with the complexity of BP-like 
algorithms applied to GF(q) LDPC codes. Section 3 focuses on simplified decoding on the 
logarithm domain, considering the EMS and its simplified version. Finally, Section 4 
presents the comparative study and draws conclusions on the interest of simplified EMS. 
 

2. Complexity of BP-like decoding algorithms applied to non-binary 
LDPC 
In this section we present the complexity in terms of number of operations at both check 
and variable processor nodes of the BP decoding algorithm and its derivative versions in the 
frequency and logarithm domains. 

2.1 The BP decoding algorithm 

As in the BP decoding algorithm the check node processing is a convolution of probability 
densities on GF(2p), the computational complexity rapidly becomes prohibitively large and 
the number of basic operations required to perform the parity-check node update (sum-
product step) varies exponentially with both the field order q and the parity check degree dc.   
 
 A recursive implementation of the check node update (as presented in [10]), can reduce 
complexity to O(dcq2). This backward-forward calculation (same principle as in the BCJR 
algorithm) for a check node is represented in Figure 1 for dc= 4. Upic is the message going 
from permutation node i to the check node and Vpci is the message from the check node to 
permutation node i (1< i < dc ). Note that each ⊗ operator performs a direct convolution of 
two distributions of size q (i.e. q2

 operations).  
 
 The number of operations needed to implement an elementary step of this algorithm at 
the variable node and the check node level is presented in Table 1, as a function of dc and 
particularized for dv = 2. 
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 We can conclude that, in general, any implementation of the BP algorithm for non-
binary LDPC remains too complex to allow very-high order fields and q must be limited to 
16 for a reasonable hardware implementation.  
 

Table 1: Number of operations to perform an elementary step at the check node and variable node in the BP 
algorithm (dv = 2) 

 Number of additions Number of 
multiplications 

Number of divisions  

Variable node q-1 q q 
Check node 3(dc -2) q (q-1) 3(dc -2) q2 0 
 
 

 
Figure 1: Check node backward-forward computation for BP decoding, dc = 4 

2.2 FFT-based BP decoding on GF(2p) 

In [1], the authors propose to perform the computation of the check node update in the 
frequency domain, which transforms the convolution into a simple product (see also [3] and 
[2]). This way, the computational complexity of the check node update is reduced to 
O(dc.p.q). Figure 22 shows the FFT and the backward-forward calculation for a check node 
in the FFT-BP decoding algorithm.  
 

 
Figure 2: Check node backward-forward computation for FFT-based BP decoding, dc = 4 
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 This reduced-complexity BP algorithm allows decoding non-binary LDPC codes in 
very-high-order fields and for large values of dc, or equivalently, high code rates, since R ≥ 
1 – dv / dc. Table 2 gives the number of operations required to perform an elementary step in 
the FFT BP algorithm (p = log2 q) for both variable and check nodes. Each ⊗ operator 
performs the convolution of two distributions in the frequency domain, that is q pairwise 
multiplications. Each FFT has a complexity of qp/2 multiplications and qp/2 additions. 
 

Table 2: Number of operations to perform an elementary step at the check node and variable node in the 
FFT-BP algorithm (dv = 2) 

 Number of 
additions 

Number of 
multiplications 

Number of divisions 

Variable node q-1 q q 
Check node dcqp dcqp + 3q(dc-2) 0 

2.3 Decoding in the logarithm domain (log-BP) 

The interest of decoding algorithms in the logarithm domain is well-known. First, it 
transforms the products into simple sums and the normalization of the messages is no 
longer required. The second reason is that log-domain algorithms are usually more robust to 
the quantization effects when the messages are stored on a small number of bits [9], [11]. 
The practical decoding algorithms for turbo-codes (max-log-map, max*-log-map) and 
LDPC codes (MS, logBP) are all expressed in the logarithm domain. 

Table 3: Number of operations per decoding iteration in the log-BP algorithm 

 Number of max* Number of additions Number of 
multiplications 

Variable node q-1 q 0 
Check node 3(dc-2)q(q-1) 3(dc-2)q2 0 

 
 
 Table 3 presents the number of operations needed to perform an elementary step of the 
variable and the check nodes. The max* operator is defined as:  max*(x1, x2) = log (ex1 + 
ex2) ≈ max (x1, x2). Note that this approximation is the one adopted for the simplified 
algorithms presented in the following section.  
 
 Finally, note also that the BP FFT algorithm in the logarithm domain combines the 
advantages of the logarithmic representation for hardware implementation and those of the 
frequency domain for computational complexity. An analysis of the algorithm in [9] yields 
that complexity per iteration is O(Ndvq) at the variable nodes and O(Mdcq2) at the check 
nodes, when the recursive updating of [10] is adopted.  

3. Simplified decoding in the logarithm domain  
The algorithms presented in the previous section are mathematically equivalent and present 
the same performance. The main restriction of all these is the limitation on the field order at 
a reasonable hardware complexity. We present in this section the EMS algorithm which 
represents an interesting simplified solution for reduced-complexity non-binary LDPC 
decoding. We focus on two implementations: the one presented in [4] and a more recent 
and simplified one [8]. 
 
 The EMS algorithm proposed in [4] is a generalization of the MS algorithm used for 
binary codes, and has the advantage of performing additions only, while using only a 
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limited number of messages for the check node update. The significant reduction of the 
complexity of the check node update is due to the fact that only the nm largest values of the 
messages at the input of the check node. Another point is that the EMS algorithm can be 
applied to both regular and irregular non-binary LDPC codes as the simplification is locally 
performed at the check node.  
 
 However, the sub-optimality of the EMS algorithm introduces a performance 
degradation compared to the BP algorithm. The main reason for this degradation is that the 
reliabilities computed in the EMS algorithm are overestimated. This causes the sub-optimal 
algorithm to converge too rapidly to a local minimum, which is most often a pseudo-
codeword. This behaviour has also been observed for binary LDPC codes decoded with 
MS, as well as for turbo codes decoded with max*-log-map (either parallel or block turbo 
codes). For binary LDPC codes, a simple technique that is used to compensate for this 
overestimation is to reduce the magnitude of the messages at the variable-node input by 
means of a factor or an offset [11]. These correction techniques were applied to the EMS 
algorithm, either using a factor correction or an offset correction [4], and simulations 
showed that the EMS algorithm can approach the performance of the BP-FFT decoder, and 
even in some cases slightly outperform the BP-FFT decoder.  
 
 The complexity of the EMS algorithm is O(dcnmq) per check node. For values of nm 
providing near-BP error performance, this complexity is roughly the same as that of the BP-
FFT decoder, but without multiplications or divisions. The EMS algorithm then becomes a 
good candidate for hardware implementation of non-binary LDPC decoders, because of its 
reduced complexity and the small or negligible performance degradation it introduces.  
 
 A new implementation of the EMS algorithm has recently been proposed in [8]. This 
approach aims at reducing both complexity and memory requirements of the EMS non-
binary LDPC decoder. In [4], the output messages of the check node are composed of q 
values, thus the complexity of a single parity check node varies in O(nmq) and all the 
messages in the graph are stored with their full representation of q real values, implying 
high memory requirements. The originality of the new implementation is to store only nm 
values in all vector messages (at both variable and check nodes).  
 
 As in [4], the performance degradation due to the truncation of the messages can be 
mitigated with a proper compensation of this information loss. The author in [8] proposes a 
single scalar offset as correction factor, whose value is optimized with density evolution 
methods.  
  
 Table 4 presents the number of operations involved in each variable and check node. In 
this analysis, we consider practical hardware implementation. nop is the number of 
necessary steps so that all the nm values of the output vector are computed. The memory 
requirements depend linearly on nm and the complexity is dominated by O(nm

2). The main 
challenge is then to fix nm to the minimum value that assures performance approaching the 
BP decoder.  
Table 4: Number of operations to perform an elementary step at a variable node (with dv = 2) and a check 

node with the simplified EMS algorithm 

 Number of max Number of real 
additions 

Number additions in 
GF(q)  

Variable node nm (nm+2) nm 0 
Check node  3(dc-2)nop nm  3(dc-2)(nop + nm) 3(dc-2)(nop + nm) 
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4. Complexity comparison  
Tables 5 and 6 summarize the study presented in Sections 2 and 3. In Table 5 we consider 
the number of operations needed to perform a variable node update for the fixed variable 
node degree dv=2. Note the significant complexity reduction introduced by the simplified 
version of the EMS compared to BP or FFT-BP: only nm (nm+2) Max operations and nm 
additions are required (with nm << q).  
  
 Table 6 considers the check node update, which typically represents the main 
computational load in LDPC decoders. The number of operations in an elementary step is 
presented for each decoding algorithm. In Figure 7 we compare the complexity of the FFT-
BP and the simplified EMS algorithm for the DaVinci codes (this is q = 64 and dc = 4, 6, 8, 
12) in terms of number of additions at the elementary step of a check node update. The 
curves show that the EMS algorithm is only interesting for values of nm under a certain 
threshold. This threshold depends on the code rate (Table 7). Simulation results show that 
for R=1/2 practical values of nm are 12 < nm < 24. For R=5/6, we recommend nm = 8. Note 
that the value of nop is fixed to 2*nm. 
 

Table 5: Number of operations to perform an elementary step in a variable node (with dv = 2) for different 
decoding algorithms 

Number of operations in an elementary step of a variable node Decoding 
algorithm Multiplications Divisions Max* Max  Additions 

BP Q q 0 0 q-1 

FFT-BP Q q 0 0 q-1 

Log-BP 0 0 q-1 0 q 
Simplified 
EMS 

0 0 0 nm (nm+2) nm 

 
 

Table 6: Number of operations to perform an elementary step in a check node (with variable dc) for different 
decoding algorithms 

Number of operations in an elementary step of a check node Decoding 
algorithm Multiplications Max* Max  Additions 

BP 3(dc -2) q2 0 0 3(dc -2) q (q-1) 

FFT-BP dc qp+ 3(dc -2)q 0 0 dc qp 

Log-BP 0 3(dc-2)q(q-1) 0 3(dc-2)q2 
Simplified 
EMS 

0 0 3(dc-2)nop nm 3(dc-2)(nop + nm )   (real) 
3(dc-2)(nop + nm)  (in GF(q)) 

 

5. Conclusion 
This paper presented a state-of-the-art in non-binary LDPC decoding and a detailed study 
of the complexity presented by each decoding algorithm. Special attention was given to 
EMS and its simplified version, which introduces significant complexity reduction without 
nearly no performance loss. From the complexity curves we deducted the optimal values of 
the truncation parameter nm for the application of the simplified EMS to a family of GF(64)-
LDPC codes. The continuation of the study will focus on new issues for complexity 
reduction of the simplified EMS. The idea is that if complexity is even more reduced, we 
can increase nm   and then improve performance. 
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dc = 4 (code rate R=1/2) 

 

 
dc = 6 (code rate R=2/3) 

 
 

dc = 8 (code rate R=3/4) 
 

 

 
dc  = 12 (code rate R=5/6) 

 

 
Figure 7: Check node complexity comparison in number of additions for the FFT-BP and the EMS 

algorithms. FFT-BP(1) stands for complexity evaluation considering that 1 multiplication equals 8 additions, 
idem for FFT-BP(2) 1 multiplication equals 12 additions 

Table 7: Values of nm for which the EMS algorithm becomes interesting in terms of complexity 

Code rate, R nm  values 
R = ½ nm   < 30 

R = 2/3 nm   < 20 
R = 3/4 nm   < 15 
R = 5/6 nm   < 12 
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